RAN Translation in Huntington Disease
نویسندگان
چکیده
Huntington disease (HD) is caused by a CAG ⋅ CTG expansion in the huntingtin (HTT) gene. While most research has focused on the HTT polyGln-expansion protein, we demonstrate that four additional, novel, homopolymeric expansion proteins (polyAla, polySer, polyLeu, and polyCys) accumulate in HD human brains. These sense and antisense repeat-associated non-ATG (RAN) translation proteins accumulate most abundantly in brain regions with neuronal loss, microglial activation and apoptosis, including caudate/putamen, white matter, and, in juvenile-onset cases, also the cerebellum. RAN protein accumulation and aggregation are length dependent, and individual RAN proteins are toxic to neural cells independent of RNA effects. These data suggest RAN proteins contribute to HD and that therapeutic strategies targeting both sense and antisense genes may be required for efficacy in HD patients. This is the first demonstration that RAN proteins are expressed across an expansion located in an open reading frame and suggests RAN translation may also contribute to other polyglutamine diseases.
منابع مشابه
RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, m...
متن کاملRepeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities!
Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through g...
متن کاملA Grey Box Neural Network Model of Basal Ganglia for Gait Signal of Patients with Huntington Disease
Introduction: Huntington disease (HD) is a progressive neurodegenerative disease which affects movement control system of the brain. HD symptoms lead to patient’s gait change and influence stride time intervals. In this study, we present a grey box mathematical model to simulate HDdisorders. This model contains main physiological findings about BG. Methods: We used artificial n...
متن کاملRelocation, Realignment and Standardisation: Circuits of Translation in Huntington 's Disease Relocation, Realignment and Standardisation: Circuits of Translation in Huntington's
Based on complementary ethnographies of a biomedical laboratory and a clinic – both working on Huntington Disease (HD) – we discuss the circuits of translation evident in biomedical and clinical research. By examining a recent epistemological shift from understanding the disease as genetic to understanding the disease as a problem for neuroscience, as well as documenting the multiple framings o...
متن کاملThe Effect of Normobaric Hyperoxia on Superoxide Dismutase Activity and Neurologic Deficits in Huntington Animal Model
Introduction: resent studies have been shown that normobaric hyperoxia (HO) can induce excitotoxicity and stress oxidative tolerance (ETT) in variety of organs such as brain. In this study, we examined the intermittent dose of normobaric hyperoxia (HO) on neurologic deficit, and superoxide dismutase activity in brain tissue of Huntington animal model. Method: The rats were divided to three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 88 شماره
صفحات -
تاریخ انتشار 2015